Pcie spread spectrum from the tech arp bios guide!

Eist в биосе что это?

Notes

  1. Torrieri, Don (2018). Principles of Spread-Spectrum Communication Systems, 4th ed..
  2. ↑ Kahn, David (January 17, 2014). How I Discovered World War II’s Greatest Spy and Other Stories of Intelligence and Code. CRC Press. ISBN . https://books.google.com/books?id=35ClAgAAQBAJ&dq=Marconi+1899&pg=PA158. Retrieved November 9, 2022.
  3. Tony Rothman, Random Paths to Frequency Hopping, American Scientist, January–February 2019 Volume 107, Number 1, Page 46 americanscientist.org
  4. Jonathan Adolf Wilhelm Zenneck, Wireless Telegraphy, McGraw-Hill Book Company, Incorporated, 1915, page 331
  5. Denis Winter, Haig’s Command — A Reassessment
  6. Danilewicz later recalled: «In 1929, we proposed to the General Staff a device of my design for secret radio telegraphy which fortunately did not win acceptance, as it was a truly barbaric idea consisting in constant changes of transmitter frequency. The commission did, however, see fit to grant me 5,000 zlotys for executing a model and as encouragement to further work.» Cited in Władysław Kozaczuk, Enigma: How the German Machine Cipher Was Broken, and How It Was Read by the Allies in World War II, 1984, p. 27.
  7. Ari Ben-Menahem, Historical Encyclopedia of Natural and Mathematical Sciences, Volume 1, Springer Science & Business Media — 2009, pages 4527-4530
  8. American National Standard for Electromagnetic Noise and Field Strength Instrumentation, 10 Hz to 40 GHz—Specifications, ANSI C63.2-1996, Section 8.2 Overall Bandwidth

Eist в БИОСе что это?

Процессоры Intel поддерживают несколько технологий для оптимизации энергопотребления. В этой статье (перевод ) дается обзор p-состояний (оптимизация напряжения питания и частоты CPU во время работы) и c-состояний (оптимизация потребления мощности, если ядро не выполняет ни одной инструкции).

Во время выполнения кода операционная система и CPU могут оптимизировать энергопотребление с помощью различных P-состояний (P это сокращение от “performance”, что означает “производительность”). В зависимости от требований, CPU работает на разных частотах. Состояние P0 соответствует самой высокой частоте (с самым высоким напряжением питания).

Для процессоров Intel до архитектуры Haswell/Broadwell, желаемая частота (и соответствующее ей напряжение питания) указывается операционной системой путем записи соответствующих величин в специальные регистры процессора .

В архитектуре Skylake операционная система может оставить управление P-состояниями аппаратуру CPU (Speed Shift Technology, Hardware P-states ). С Kaby Lake эти функции были дополнительно оптимизированы .

Speed Schift (сдвиг скорости). P-состояния определяются в BIOS, и управляются операционной системой. Технология Speed Schift дает полное или частичное управление частотой тактирования CPU (может осуществляться либо во всем диапазоне, либо в узком окне). Speed Schift требует поддержки со стороны операционной системы (Windows 10 с новыми обновлением эту функцию поддерживает), также требуется любой процессор Intel 6 Skylake. Сдвиг скорости означает ускоренный отклик на запросы изменения производительности со стороны ПО (JavaScript, инструменты офиса, веб-браузеры). Технология сдвига скорости обеспечивает увеличение производительности для обычных задач, при этом незначительно снижается общее энергопотребление, т. е. эффективность работы всей системы повышается.

В отличие от P-состояний, которые были разработаны для регулирования потребления мощности во время выполнения кода (т. е. в нормальном рабочем состоянии процессора), C-состояния используются для оптимизации энергопотребления в режиме ожидания (idle mode, т. е. когда никакой код процессором не выполняется).

Типовые C-состояния следующие:

C0 – Active Mode: код выполняется, это состояние соответствует одному из P-состояний. C1 – Auto Halt (автоматическая приостановка). C1E – Auto halt, low frequency, low voltage (автоматическая приостановка с пониженной частотой и напряжением питания). C2 – Временное состояние перед переходом в C3. Память в рабочем состоянии. C3 – Сброс кэшей L1/L2 (flush), выключение тактовых частот. C6 – Сохранение состояний ядра перед выключением, и выключение PLL (т. е. прекращение синтеза тактовых частот). C7 – C6, плюс может быть сброшен LLC (LLC означает кэш самого высокого уровня, т. е. самая медленная память кэш). C8 – C7, плюс должен быть сброшен LLC.

Примечание *: показано в грубом приближении.

C-состояния можно отличить друг от друга по C-состояниям ядра (Core C-states или CC-states), состояниям корпуса (Package C-states или PC-states) и логическим состояниям. В большинстве случаев операционная система устанавливает определенное состояние для ядра путем выполнения команды MWAIT.

Примечание: “состояние ядра” (core state) относится к ядру, которое находится в состоянии самого большого потребления энергии (наиболее активно).

В некоторых случаях рекомендуется деактивировать в BIOS настройки экономии питания CPU. Здесь показано, где найти эти опции и как их запретить, чтобы опции управления питанием (CPU P State Control и CPU C State Control) были полностью запрещены в BIOS (на примере материнской платы Supermicro X10DRi и процессора Intel Xeon E5 2620v4.

Как запретить CPU Power Saving:

1. Во время начального процесса загрузки (сразу после включения питания или сброса) нажмите специальную клавишу для входа в BIOS. Чаще всего это Del (Delete) или F2, для материнской платы Supermicro X10DRi это клавиша Delete.

2. Перейдите в раздел настроек Advanced CPU Configuration -> Advanced Power Management Configuration.

3. Поменяйте настройку Power Technology в состояние Custom и Energy Efficient Turbo в состояние Disable.

4. Перейдите в раздел CPU P State Control, деактивируйте EIST (P-States) and Turbo Mode.

5. Перейдите в раздел CPU C State Control, поменяйте Package C State Limit на C0/C1 state и деактивируйте CPU C3 Report, CPU C6 Report и Enhanced Halt State (C1E).

Spread spectrum

A spread-spectrum signal is a signal that occupies a bandwidth that is much larger than necessary to the extent that the occupied bandwidth is independent of the bandwidth of the input-data. With this technique, a narrowband signal such as a sequence of zeros and ones is spread across a given frequency spectrum, resulting in a broader or wideband signal. Spread spectrum was originally intended for military application and it offers two main benefits. First, a wideband signal is less susceptible to intentional blocking (jamming) and unintentional blocking (interference or noise) than a narrowband signal. Secondly, a wideband signal can be perceived as part of noise and remains undetected. The two most popular spread spectrum techniques widely used in commercial applications are direct sequence spread spectrum (DSSS) and frequency hopping spread spectrum (FHSS).

Bluetooth, cordless phones and other fixed broadband wireless access techniques use FHSS; WiFi uses DSSS. Given that both the techniques occupy the same frequency band, co-existence of bluetooth and Wifi devices is an interesting issue. Both FSSS and DSSS devices perceive each others as noise, i.e, the WiFi and Bluetooth devices see each other as mutual interferers. All the spread spectrum techniques make use of some form of spreading or code sequences.

This article is part of the book
● Wireless Communication Systems in Matlab (second edition), ISBN: 979-8648350779 available in ebook (PDF) format and Paperback (hardcopy) format.

Настройки биоса на компьютере по умолчанию

После подключения к сети вашего персонального друга (компьютера) начинается загрузка основной ОС, затем подключается винчестер, с которого загружается «Виндоус» или другая ОС. Настройки биоса не включаются автоматически на персональном устройстве.

Для входа в этот режим настроек необходимо после включения компьютера подождать одиночный звуковой сигнал или начало надписи о загрузке, а затем несколько раз нажать кнопку «F2» или «DEL (Delete)» (зависит от «материнки»). Правильный вариант высвечивается внизу экрана.

После этого включаются настройки биоса на компьютере по умолчанию. Количество и названия основных пунктов меню, расположенных вверху таблицы настроек bios, могут отличаться. Мы рассмотрим основные разделы и подразделы одного из вариантов такого меню, которое состоит из пунктов:

  1. Main — выбор даты, времени, жестких дисков и подключенных накопителей.
  2. Advanced — выбор этого пункта позволит выбрать и поменять режимы:
  • процессора (например, разогнать его);
  • памяти;
  • портов (входов-выходов) компьютера.
  1. Power — изменение конфигурации питания.
  2. Boot — изменение загрузочных параметров.
  3. Boot Setting Configuration (Boot) — выбор параметров, влияющих на быстроту загрузки ОС и на определение мыши и клавиатуры.
  4. Tools — специализированные настройки. Например, обновление с «флешки».
  5. Exit — Выход. Можно записать изменения и выйти из bios или оставить все как было (по умолчанию).

Принцип работы

Хорошо известно, что персональный компьютер – это сложное устройство, потребляющее много электроэнергии. Однако далеко не всегда от компьютера требуется работа на полную мощность, и поэтому очень часто энергия, потребляемая компонентами компьютера, может расходоваться впустую. Разумеется, этот фактор имеет большое значение для пользователя, особенно если он владеет мобильным компьютером.

Эта проблема давно беспокоила разработчиков чипсетов и процессоров, и они приложили немало усилий для того, чтобы ее решить и оптимизировать потребление энергии различными компонентами ПК. Одной из технологий, созданных для этой цели, является технология APM (Advanced Power Management, Расширенное управление электропитанием), разработанная еще в начале 1990-х гг компаниями Intel и Microsoft. Стандарт APM подразумевал возможность работы компьютера в нескольких режимах сохранения энергии, и стал настолько удачным, что просуществовал до середины 2000-х гг, когда на смену ему пришел более совершенный стандарт ACPI. Однако до сих пор существует множество компьютеров, поддерживающих стандарт APM.

Стандарт APM поддерживает 4 основных энергетических состояния персонального компьютера. Первое состояние – режим нормальной работы, когда компьютер полностью включен и все его компоненты работают на полную мощность. Такой режим устанавливается, когда компьютер активно используется человеком или фоновыми программами.

Второй режим также применяется во время активного функционирования задач операционной системы, однако при этом часть компонентов работает на пониженных частотах или в энергосберегающем режиме.

Третье состояние носит название Standby. При его выборе большинство устройств переводится в энергосберегающий режим, а процессор может быть даже выключен. Этот режим используется в том случае, если пользователь не производит активных действий с компьютером. Пользователь может легко вывести компьютер из состояния Standby – ему достаточно осуществить движение мышью или нажать клавишу на клавиатуре.

Режим Suspend подразумевает более глубокое погружение компьютера в сон – в этом случае большинство компонентов ПК выключено. Состояние операционной системы сохраняется в памяти, как и в режиме Standby, однако для вывода системы из режима Suspend требуется большее время, чем для вывода из Standby.

И наконец, существует состояние, когда весь компьютер со всеми своими компонентами выключен, и привести его в рабочее состояние можно только нажатием кнопки питания на системном блоке.

Для управления энергосберегающими состояниями APM при помощи средств BIOS и предназначена опция Power Management. Разберем подробнее доступные пользователю варианты значений опции.

Вариант Max Saving включает режим сохранения энергии, который подразумевает переход компьютера в энергосберегающий режим уже через минуту отсутствия пользовательской активности. Само собой разумеется, что в данном случае экономия электроэнергии является максимальной, однако такой быстрый переход в режим энергосбережения не всегда бывает удобным.

Min Saving подразумевает переход в энергосберегающее состояние спустя гораздо больший промежуток времени, обычно через 10 минут. Этот вариант более удобен для пользователя, хотя при нем расходуется большее количество энергии.

Существует также опция User Defined, предлагающая пользователю больше возможностей для настройки энергосберегающих режимов и, в частности, ручную установку временных интервалов.

Вариант опции Disabled выключает управление состояниями APM со стороны BIOS. Однако это не означает, что пользователь в этом случае лишится возможности управлять энергосберегающими режимами компьютера. Если на компьютере установлена операционная система, поддерживающая технологию ACPI (для линейки Windows это все ОС, начиная с Windows 2000), то в этом случае пользователь может регулировать режимы энергосбережения при помощи богатых возможностей интерфейса ACPI.

В опции Power Management может встретиться также вариант Enabled. Этот вариант включает общую поддержку технологии APM через BIOS. Однако детальную настройку режимов в этом случае можно производить только средствами ОС (в том числе и ОС, не поддерживающих ACPI, таких, как Windows 98 и более ранние).

Стоит ли включать опцию?

В большинстве случаев опцию стоит выключить, установив значение Disabled. Несмотря на то, что данная опция позволяет уменьшить уровень электромагнитного излучения, исходящего от шины процессора, это уменьшение, как правило, не является значительным. Кроме того, иногда использование технологии Spread Spectrum может негативно отразиться на производительности компьютера. В частности, использование функции Spread Spectrum может помешать разгону отдельных элементов компьютера при помощи увеличения частоты внутренних шин.

Включение данной опции может быть оправдано лишь в том случае, если вы имеете серьезные проблемы с высоким уровнем электромагнитного излучения, исходящего от электронных компонентов компьютера, и хотите уменьшить уровень помех, влияющих на окружающие электронные приборы и устройства.

Высокая производительность в windows 7 , windows 8 и windows 10

Чтобы включить высокую производительность нужно нажать пуск — панель управление — Электропитание.

По умолчанию пункт Высокая производительность скрыта. Справа нажимаем на стрелочку в кружочке и отмечаем пункт Высокая производительность.

Аналогично делается и в Windows 10. Ниже на скриншотах все показано:

скриншот 1

скриншот 2

скриншот 3

скриншот 4

Так же вы можете создать собственную схему электропитания .Чтобы добавить свою схему надо нажать «дополнительные сведения о схемах управления питанием»

дополнительные сведения о схемах управления питанием

После появиться внизу поле «название схемы»

Где вы можете ввести собственное название схемы и задать свои параметры и настройки.

своя схема электропитания windows 10

Вот вам доступные основные способы отключения энергосбережения и повышения производительности компьютера или ноутбука с операционными системами windows 7 ,8 и 10.

Принцип работы

Как известно, персональный компьютер – это сложное устройство, содержащее множество микросхем и электронных компонентов, потребляющих много энергии и способных излучать в окружающее пространство во время своей работы мощные электромагнитные волны в радиодиапазоне. Эти волны далеко не всегда безобидны, поскольку они могут, благодаря физическому явлению интерференции, приводить к нарушению работы находящихся рядом с компьютером электромагнитных приборов и устройств, таких, например, как телевизоры, радиоприемники, и.т.д.

Данное явление принято называть электромагнитными помехами (Electromagnetic Interference). Для борьбы с электромагнитными помехами было разработано немало способов. В случае персонального компьютера большинство из создаваемых его электронными компонентами помех успешно экранируется металлическим корпусом, однако часто этого бывает недостаточно.

Кроме того, конструкторы при разработке электронных устройств стремятся к тому, чтобы минимизировать негативное влияние электромагнитных помех. Для этого различные устройства, функционирующие поблизости друг от друга (а это могут быть, в частности, и внутренние элементы компьютера), проектируются таким образом, чтобы они соответствовали бы требованиям электромагнитной совместимости.

Также в компьютерной индустрии существует ряд строгих стандартов на количество создаваемых элементами компьютера помех. Эти стандарты в разных регионах регулируются такими организациями, как FCC, JEITA и IEC.

Одним из методов борьбы с электромагнитными помехами, создаваемыми компьютером, также является метод расширения спектра электромагнитного излучения(Spread Spectrum). Суть его заключается в следующем. Наибольшие электромагнитные помехи из всех компонентов, расположенных внутри компьютера, создает микросхема тактового генератора. Эта микросхема обеспечивает работу процессора, а также многих шин, которые связывают процессор с другими устройствами, такими, как оперативная память или устройства ввода-вывода. При работе тактового генератора создается ряд очень мощных электромагнитных помех, максимумы которых приходятся на пики тактовых сигналов. Однако если распределить энергию, излучаемую на максимуме тактового сигнала, в более широком диапазоне, сделав форму сигнала более отлогой, то максимальная величина электромагнитных помех в большинстве случаев не будет превышать заранее установленного безопасного значения.

Для реализации данного метода в BIOS многих производителей включены опции управления распределением спектра электромагнитного излучения. Примером такой опции является опция CPU Spread Spectrum, которая обычно входит в состав группы опций, предназначенных для установки параметров распределения спектра для различных шин компьютера. Она позволяет включить или выключить функцию распределения спектра для шины процессора. В отличие от такой широко распространенной опции, как Spectrum, данная опция не затрагивает другие шины персонального компьютера, такие, как шины PCI/PCI-E/AGP, IDE/SATA и т.д. Включение опции осуществляется при помощи выбора значения Enabled, а выключение – при помощи значения Disabled.

Spread-spectrum clock signal generation

Spread spectrum of a modern switching power supply (heating up period) incl. waterfall diagram over a few minutes. Recorded with a NF-5030 EMC-Analyzer

Spread-spectrum clock generation (SSCG) is used in some synchronous digital systems, especially those containing microprocessors, to reduce the spectral density of the electromagnetic interference (EMI) that these systems generate. A synchronous digital system is one that is driven by a clock signal and, because of its periodic nature, has an unavoidably narrow frequency spectrum. In fact, a perfect clock signal would have all its energy concentrated at a single frequency (the desired clock frequency) and its harmonics. Practical synchronous digital systems radiate electromagnetic energy on a number of narrow bands spread on the clock frequency and its harmonics, resulting in a frequency spectrum that, at certain frequencies, can exceed the regulatory limits for electromagnetic interference (e.g. those of the FCC in the United States, JEITA in Japan and the IEC in Europe).

Spread-spectrum clocking avoids this problem by using one of the methods previously described to reduce the peak radiated energy and, therefore, its electromagnetic emissions and so comply with electromagnetic compatibility (EMC) regulations.

It has become a popular technique to gain regulatory approval because it requires only simple equipment modification. It is even more popular in portable electronics devices because of faster clock speeds and increasing integration of high-resolution LCD displays into ever smaller devices. Since these devices are designed to be lightweight and inexpensive, traditional passive, electronic measures to reduce EMI, such as capacitors or metal shielding, are not viable. Active EMI reduction techniques such as spread-spectrum clocking are needed in these cases.

However, spread-spectrum clocking, like other kinds of dynamic frequency change, can also create challenges for designers. Principal among these is clock/data misalignment, or clock skew.

Note that this method does not reduce total radiated energy, and therefore systems are not necessarily less likely to cause interference. Spreading energy over a larger bandwidth effectively reduces electrical and magnetic readings within narrow bandwidths. Typical measuring receivers used by EMC testing laboratories divide the electromagnetic spectrum into frequency bands approximately 120kHz wide. If the system under test were to radiate all its energy in a narrow bandwidth, it would register a large peak. Distributing this same energy into a larger bandwidth prevents systems from putting enough energy into any one narrowband to exceed the statutory limits. The usefulness of this method as a means to reduce real-life interference problems is often debated, since it is perceived that spread-spectrum clocking hides rather than resolves higher radiated energy issues by simple exploitation of loopholes in EMC legislation or certification procedures. This situation results in electronic equipment sensitive to narrow bandwidth(s) experiencing much less interference, while those with broadband sensitivity, or even operated at other higher frequencies (such as a radio receiver tuned to a different station), will experience more interference.

FCC certification testing is often completed with the spread-spectrum function enabled in order to reduce the measured emissions to within acceptable legal limits. However, the spread-spectrum functionality may be disabled by the user in some cases. As an example, in the area of personal computers, some BIOS writers include the ability to disable spread-spectrum clock generation as a user setting, thereby defeating the object of the EMI regulations. This might be considered a loophole, but is generally overlooked as long as spread-spectrum is enabled by default.

An ability to disable spread-spectrum clocking in computer systems is considered useful for overclocking, as spread spectrum can lower maximum clock speed achievable due to clock skew.

COFDM[edit | edit source]

An orthogonal frequency division multiplexing (OFDM) system is similar to a frequency hopping system in that part of the information is transmitted at one narrowband frequency, and other information is transmitted at a different narrowband frequency.
However, rather than transmitting at only one narrowband frequency at a time, an OFDM system transmits at all of its frequencies all the time.
Because any one narrow band it transmitted constantly, it’s fairly easy to synchronize phase angles and use the best modulation technique for that band (QPSK).
Because all the frequencies are generated by one transmitter, it is possible to pack them far more tightly together without interference than a system that dedicated each frequency to a different transmitter.

Reflections («fading») and noise sources often obliterate a few of the narrow bands.
To overcome this, the bits are «coded» (COFDM). A forward error correction (Data Coding Theory/Forward Error Correction) code is spread across every channel, such that even if 2 channels are completely obliterated, only 2 bits of the code word are lost.
Then the receiver uses the FEC to reconstruct the obliterated data.

Стоит ли включать опцию?

В большинстве случаев опцию стоит выключить, установив значение Disabled. Несмотря на то, что данная опция позволяет уменьшить уровень электромагнитного излучения, исходящего от шины процессора, это уменьшение, как правило, не является значительным. Кроме того, иногда использование технологии Spread Spectrum может негативно отразиться на производительности компьютера. В частности, использование функции Spread Spectrum может помешать разгону отдельных элементов компьютера при помощи увеличения частоты внутренних шин.

Включение данной опции может быть оправдано лишь в том случае, если вы имеете серьезные проблемы с высоким уровнем электромагнитного излучения, исходящего от электронных компонентов компьютера, и хотите уменьшить уровень помех, влияющих на окружающие электронные приборы и устройства.

Понравилась статья? Поделиться с друзьями:
Wi-Fi Роутер
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: